A Genetic Algorithm-based Beamforming
Approach
在兹介紹一下所謂Beamforming(波束成型的天線陳列) 的架構,
自LTE通訊啓,基地台為了提供更佳的服務,故使用天線陣列來極化電磁波以利QoS的提升, 在5G的技術中, 幾乎其天缐唯一選項就是波束成型 (beamforming), 波束成型(Beamforming)技術可以大略的分成兩種:
第一種: 藉由量測到的通道係數, 設計傳送參數 (precoder), 最佳化通道
第二種: 透過多天線的相位偏移 (phase shifter), 決定電波傳遞強度模
本章節以Phase shifter 為其架構, 假設以1x9“矩陣”是線性代數來描述波束成型的天線陳列、
本文利用基因工程(Genetic Algorithm-based_來找出每一個Cell 的Weight以利其快速其值。
Source code with Python:
# -*- coding: utf-8 -*-
import numpy as np
import ga
import matplotlib.pyplot as plt
"""
The y=target is to maximize this equation ASAP:
y = w1x1+w2x2+w3x3+w4x4+w5x5+6wx6+7Wx7+8Wx7+9Wx9
where (x1,x2,x3,x4,x5,x6,x7,x8,x9)=(4,-2,3.5,5,-11,-4.7,5.0,2.1,3.1)
What are the best values for the 9 weights w1 to w9?
We are going to use the genetic algorithm for the best possible values after a number of generations.
"""
# Inputs of the equation.
equation_inputs = [4,-2,3.5,5,-11,-4.7,5.0,2.1,3.1]
# Number of the weights we are looking to optimize.
num_weights = len(equation_inputs)
"""
Genetic algorithm parameters:
Mating pool size
Population size
"""
sol_per_pop = 8
num_parents_mating = 4
# Defining the population size.
pop_size = (sol_per_pop,num_weights) # The population will have sol_per_pop chromosome where each chromosome has num_weights genes.
#Creating the initial population.
new_population = np.random.uniform(low=-4.0, high=4.0, size=pop_size)
print("new_population")
print(new_population)
"""
new_population[0,:]=[[ 2.58108145 2.42053643 -3.24720098 0.73414778 2.95861561 -3.95613747
2.34638506 -1.96226993 -2.4267999 ]
new_population[1,:]= [ 0.50988501 3.66384758 -0.35728906 -3.36106177 0.60748192 0.34572714
0.63256316 3.59916985 0.5291632 ]
new_population[2,:]= [-3.99726266 -1.05382206 -0.72618039 -0.69354415 3.6819675 1.42235044
3.21944868 0.56545786 -2.53333267]
new_population[3,:]= [-2.01602033 3.21295543 0.1898793 -2.6094637 1.9595066 -2.04175245
-0.63172776 -1.84656932 -3.39214779]
new_population[4,:]= [-1.65667992 -3.61456147 -2.08880869 0.51076383 0.06322565 -0.43551276
-3.4748497 -2.61883376 2.93387284]
new_population[5,:]= [ 3.06194594 -1.81691236 -3.5244207 3.7688676 -0.78804301 1.7642483
-1.63477098 2.0739781 -3.88904675]
new_population[6,:]= [-0.7733979 -0.59532673 0.22656214 -1.53837445 -1.72333473 -1.32000815
1.8188883 -0.8669669 -1.29803437]
new_population[7,:]= [-3.52687898 -3.91602606 2.07969841 -2.29166193 0.58104485 0.79150089
-3.13136887 -0.04240155 2.80654781]]
"""
best_outputs = []
num_generations = 10
for generation in range(num_generations):
print("Generation : ", generation)
# Measuring the fitness of each chromosome in the population.
fitness = ga.cal_pop_fitness(equation_inputs, new_population)
print("Fitness")
print(fitness)
best_outputs.append(np.max(numpy.sum(new_population*equation_inputs, axis=1)))
# The best result in the current iteration.
print("Best result : ", np.max(np.sum(new_population*equation_inputs, axis=1)))
# Selecting the best parents in the population for mating.
parents = ga.select_mating_pool(new_population, fitness,
num_parents_mating)
print("Parents")
print(parents)
# Generating next generation using crossover.
offspring_crossover = ga.crossover(parents,
offspring_size=(pop_size[0]-parents.shape[0], num_weights))
print("Crossover")
print(offspring_crossover)
# Adding some variations to the offspring using mutation.
offspring_mutation = ga.mutation(offspring_crossover, num_mutations=2)
print("Mutation")
print(offspring_mutation)
# Creating the new population based on the parents and offspring.
new_population[0:parents.shape[0], :] = parents
new_population[parents.shape[0]:, :] = offspring_mutation
# Getting the best solution after iterating finishing all generations.
#At first, the fitness is calculated for each solution in the final generation.
fitness = ga.cal_pop_fitness(equation_inputs, new_population)
# Then return the index of that solution corresponding to the best fitness.
best_match_idx = np.where(fitness == np.max(fitness))
print("Best solution : ", new_population[best_match_idx, :])
print("Best solution fitness : ", fitness[best_match_idx])
plt.plot(best_outputs)
plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.show()